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1.1 Absolutely Continuity and Singularity

Suppose µ, ν are two measures defined on the same measurable space (Ω, F).

• We say that ν is absolutely continuous with respect to µ, and write ν < µ (or ν ≪ µ) if

A ∈ F , µ(A) = 0 imply ν(A) = 0 (1.1)

Exercise: This is the case, for instance, when there exists some h : Ω → [0, ∞) in L1(µ), such that

ν(A) =
∫

A
hdµ, ∀A ∈ F .

It is a major result of measure theory that, under appropriate conditions, this is always the case.

• We say that ν and µ are equivalent, and write µ ∼ ν, if both ν < µ and µ < ν hold.

This is the case if h > 0 in the above display: for then we have also µ(A) =
∫

A
1
h dν.

• We sat that µ and ν are singular, and write µ ⊥ ν, if there exists a set A ∈ F with µ(A) = ν(AC) = 0.

For instance, with (Ω, F) = ([0, 1], B([0, 1])), consider µ = λ = Lebesgue measure, and ν = measure

induced on B([0, 1]) by the Cantor function F , ν((a, b]) = F (b) − F (a). Then µ(A) = 0 if A is the

Cantor set, but ν(A) = 1, ν(AC) = 0

Theorem 1.1 (LEBESGUE Decomposition Theorem) Suppose (Ω.F) is a measurable space, and µ, ν

σ−finite measure on it. then there exist measures νac, νs with

ν = νac + νs νac < µ, νs ⊥ µ,

and this decomposition is unique.

For instance, let λ|[a,b] denote Lebesgue measure on an interval [a, b]. Take µ = λ|[0,2], ν = λ|[1,3]. Then

νac = λ|[1,2], νs = λ|(2,3].
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Theorem 1.2 (RADON-NYKODÝM Theorem) Suppose µ (resp. ν) is a σ−finite (resp, finite) measure

on (Ω, F), and ν < µ. Then there exists a unique, up to µ − a.e. equivalence, function h : Ω → [0, ∞) in

L1(µ), such that

ν(A) =
∫

A

hdµ, A ∈ F . (1.2)

This function h is called the ”Radon-Nikodým derivative” of ν with respective to µ, and is denoted

h = dν

dµ
.

We often write dν = hdµ. This notation suggests correct intuitive conclusions. For instance:

∫
Ω

fhdµ =
∫

Ω
f

dν

dµ
dµ =

∫
Ω

fdν

for every measurable f : Ω → [0, ∞), so that fh ∈ L1(µ) ⇔ f ∈ L1(ν).

1.2 Convex Analysis and JENSEN Inequality

A function F : (a, b) → R is said to be convex if

F (λx + (1 − λ)y) ≤ λF (x) + (1 − λ)F (y) (1.3)

for every (x, y) ∈ (a, b)2, 0 ≤ λ ≤ 1.

The following figure shows an example of a convex function I drew.

Figure 1.1: Convex Function
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And we can easily derive that

F (
K∑

k=1
λkyk) ≤

K∑
k=1

F (λkyk)

for every (y1, ...yK) ∈ (a, b)K , K ∈ N λ1, ..., λK ≥ 0,
K∑

k=1
λk = 1. Equivalently: Suppose X is a random

variable with P(X = yk) = λl, k = 1, ..., K. Then, this reads: F (E(X)) ≤ E(F (X)).

It turns out that this inequality holds more generally.

Theorem 1.3 (JENSEN Inequality) Suppose X : Ω → (a, b) is an integrable random variable, and that

F : (a, b) → R is convex, for some −∞ ≤ a < b ≤ ∞. Then

F (E(X)) ≤ E(F (X))

Proof: For every ξ ∈ (a, b), there is an affine function L(x) = αx + β, x ∈ (a, b) with L(·) ≤ F (·) and

L(ξ) = F (ξ).

Take ξ = E(X), notice

E[F −(X)] ≤ E[L−(X)] ≤ |α|E(|X|) + |β|< ∞.

This means that E(F (X)) is well-defined.

Now clearly

E[F (X)] ≤ E[L(X)] = L[E(X)] = F [E(X)].

1.3 Discrepancy of Two Measures

1.3.0.1 Total Variation Distance

How do we define measure ”distance” between two measures (i.e., two distributions of mass, piles of sand,

et cetera)? Here is the simplest such distance, total variation.

Definition 1.4 Suppose µ, ν are arbitrary measures on (Ω, F); their Total Variation Distance is

∥µ − ν∥T V := sup
A∈F

|µ(A) − ν(A)|.
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Exercise: Suppose µ, ν are probability measures, and absolutely continuous w.r.t. some third probability

measure λ:

µ(A) =
∫

A

fdλ, ν(A) =
∫

A

gdλ

for some f, g : Ω → [0, ∞) in L1(λ). With h = f − g, we have

∥µ − ν∥T V = 1
2

∫
Ω

|h|dλ =
∫

Ω
h+dλ.

1.3.1 Relative Entropy

Suppose µ, ν are probability measures on (Ω, F). The relative entropy D(ν|µ) of ν w.r.t. µ is defined as

D(ν|µ) = ∞, if ν ⊥ µ.

On the other hand, if ν < µ, i.e. ν(A) =
∫

A
hdµ for some h : Ω → [0, ∞) in L1(µ), the relative entropy in

defined as

D(ν|µ) :=
∫

Ω
loghdν =

∫
Ω

h loghdµ =
∫

Ω
F (h)dµ

=
∫

Ω
log

dν

dµ
dν =

∫
Ω

dν

dµ
log

dν

dµ
dµ =

∫
Ω

F ( dν

dµ
)dµ

Unlike the total variation distance, this definition is not symmetric in µ, ν. We claim D(ν|µ) > 0.

Proof: There is nothing to prove, if ν ⊥ µ.

Whereas, if ν < µ, Jensen gives

D(ν|µ) = Eµ[F (h)] ≥ F [Eµ(h)] = F [
∫

Ω
hdµ] = f [1] = 0. (1.4)

We have used here the convexity of F (x) = x logx: F ′(x) = 1 + logx, F ′′(x) = 1
x > 0

The following theorem reveals that, small entropy implies closeness in the total variation distance.

Theorem 1.5 (PINSKER-CSISZÁR Inequality) For µ, ν two probability measure,

2∥µ − ν∥2
T V ≤ D(ν|µ).

The entropy H(µ) of a probability measure µ on (R, B(R) is defined as



Lecture 1: Relationships Between Measures 1-5

H(µ) :=


∞ , if µ ⊥ λ = Lebesgue measure,∫

R
flog( 1

f
)dλ =

∫
R

f(x)log( 1
f(x) )dx, if µ < λ with density dµ

dλ
, µ(A) =

∫
A

f(x)dx.

Suppose now: ν(A) =
∫

A
f(x)dx has zero mean and unit variance:

∫
R xf(x) = 0,

∫
R x2f(x)dx = 1. Suppose

also: µ(A) =
∫

A
ϕ(x)dx, ϕ(x) = 1√

2π
e− x2

w standard normal.

Then,

D(ν|µ) =
∫
R

log

(
f(x)
g(x)

)
f(x)dx

=
∫
R

log[f(x)]f(x)dx +
∫
R

log( 1
ϕ(x) )dx

=
∫
R
(x2

2 + log
√

2π)f(x)dx − H(ν)

=
∫
R
(x2

2 + log
√

2π)ϕ(x)dx − H(ν) (Recall both µ and ν has the same second moment.)

=
∫
R

log( 1
ϕ

)ϕ(x)dx − −H(ν)

= H(µ) − H(ν) ≥ 0.

And we conclude that, among all distributions with mean zero and variance 1, the Gaussian has the biggest

entropy.

1.3.2 The Information Theoretic Proof of CLT

Consider now a sequence X1, X2, ... of I.I.D. random variables with E(X2) < ∞ and m = EX1, σ =√
Var(X1). We denote by µn the distribution of Zn := 1

σ
√

n

n∑
j=1

(Xj − m). This distribution has mean zero

and variance 1.

We denote by µ the distribution of a standard Gaussian r.v. Z.

It was conjectured by Shannon (1949), and proved by Artstein et al. (2005), that

lim
n

↑ H(µn) = H(µ),

i.e. the entropy of (Zn)n∈N INCREASES to the entropy of the standard Gaussian.

But then, this means that D(ν|µ) = H(µ) − H(µn) ≥ 0 decreases to zero, as n → ∞; and be the PINSKER-
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CSISZÁR Inequality

2∥µ − ν∥2
T V ≤ D(ν|µ),

so does ∥µ − ν∥T V .


